Date/heure
2 juin 2020
14:00 - 15:00
Oratrice ou orateur
Simon Roby
Catégorie d'évènement Séminaire des doctorants
Résumé
L’analyse harmonique vise à décomposer les phénomènes (souvent des fonctions) en constituantes plus simple à analyser, appelées « signaux ». Après avoir analysé ces constituantes, on recompose la fonction d’origine en essayant de conserver certaines propriétés. C’est donc l’approfondissement et la généralisation des concepts de série et transformée de Fourier. Elle a été largement appliquée en physique (elle vient en fait du questionnement des physiciens comme souvent au XXème siècle) : traitement des signaux, mécanique quantique, neurosciences. Nous verrons dans cet exposé comment généraliser ce concept aux groupes de Lie (appelé analyse harmonique sur les groupes de Lie) et quels sont les résultats connus aujourd’hui. Le lien avec les représentations des groupes sera aussi abordé.