Le niveau de répartition de la fonction somme des chiffres dans les progressions arithmétiques.

Date/heure
2 avril 2026
14:30 - 15:30

Oratrice ou orateur
Nathan Toumi (IECL)

Catégorie d'évènement
Séminaire de Théorie des Nombres de Nancy-Metz


Résumé
Pour $q \geq 2$ et $n \in \mathbb{N}$, on note $s_q(n)$ la somme des chiffres de $n$ écrit en base $q$. Spiegelhofer (2020) a démontré que la suite de Thue–Morse admet un niveau de distribution égal à $1$, améliorant un résultat antérieur de Fouvry et Mauduit (1996). Nous généralisons ce résultat aux suites de la forme $\left\{\exp\left(2\pi i \ell s_q(n)/b\right)\right\}_{n \in \mathbb{N}}$ et fournissons un exposant explicite dans la borne supérieure. L’exposé se terminera par quelques applications à l’étude des valeurs polynomiales $(F(n))_{n \in \mathbb{N}}$ presque premières d’un polynôme $F \in \mathbb{Z}[X]$ donné, avec la condition $s_q(n) \equiv a \bmod{b}$, pour $b,q \geq 2$ deux entiers tels que $(b,q-1)=1.$