Le problème de Dirichlet sur des domaines singuliers

Date/heure
14 janvier 2020
14:00 - 15:00

Oratrice ou orateur
Rémi Cöme

Catégorie d'évènement
Séminaire des doctorants


Résumé

Le problème de Dirichlet sur un domaine lisse et borné (Omega subset mathbb{R}^n) est bien posé : il existe toujours une unique solution, et celle-ci possède la plus grande régularité possible. Lorsque (Omega) n’est pas lisse, par exemple pour un polyhèdre, cette dernière propriété n’est plus vraie. En faisant un changement de variable qui envoie la singularité « à l’infini », je montrerai comment des résultats sur des variétés non-compactes permette de retrouver cette régularité.
Ce sera l’occasion d’évoquer quelques outils fondamentaux de l’analyse fonctionnelle : théorème de Lax-Milgram, inégalité de Poincaré…