Date/heure
13 octobre 2022
13:30 - 14:30
Oratrice ou orateur
Nathan Couchet (Clermont-Ferrand)
Catégorie d'évènement Séminaire Théorie de Lie, Géométrie et Analyse
Résumé
Dans la première moitié de l’exposé nous établirons un premier théorème à savoir que dans le contexte des dilatations, tout symbole classique/poly-homogène a(x,\xi) est la restriction en t=1 d’une fonction homogène modulo Schwartz u(x,\xi,t), vue dans une dimension supérieure.
La seconde moitié de l’exposé fera le pont entre le calcul pseudo-différentiel groupoïdal de Yuncken et Van Erp datant de 2017, dans lequel EvY définissent un calcul pseudo-différentiel grâce aux distributions r-fibrées sur le groupoïde tangent généralisé d’Alain Connes, et les travaux de Beals et Greiner datant de 1983, dans lesquels BG définissent un calcul pseudo-différentiel dans le cadre des variétés d’Heisenberg. Un second théorème que nous avons obtenu montre que ces deux théories coïncident.