Date/heure
3 juillet 2019
10:30 - 11:30
Oratrice ou orateur
Michel Egeileh
Catégorie d'évènement Séminaire Théorie de Lie, Géométrie et Analyse
Résumé
La description quantique et relativiste des particules élémentaires a rapproché de manière considérable les notions de force et de matière. Les deux sont décrites en termes de champs; ce qui les distingue est le spin: entier pour la force, demi-entier pour la matière. Dans le second cas, la limite classique nécessite de travailler dans une catégorie de supervariétés. Dans cet exposé, nous commencerons par définir l’extension naturelle de la mécanique classique d’une particule aux supervariétés, puis nous procéderons à sa quantification. La mécanique quantique supersymétrique ainsi obtenue fournit un cadre naturel qui permet d’établir, ne serait-ce qu’à un niveau heuristique, la formule de Atiyah-Singer donnant l’indice de l’opérateur de Dirac. Après une brève discussion des notions requises, nous tenterons de présenter les arguments, remontant à Witten, qui mènent à la formule de l’indice, en se basant sur la localisation d’une intégrale de chemin dans la supervariété des lacets.