L’équation Langevin quantique et la dynamique hors équilibre du modèle sphérique

Date/heure
25 novembre 2021
14:15 - 15:15

Lieu
Salle de séminaires Metz

Oratrice ou orateur
Malte Henkel (LPCT Nancy)

Catégorie d'évènement
Séminaire Théorie de Lie, Géométrie et Analyse


Résumé

La description de la dynamique hors équilibre des systèmes quantiques ouverts, c.à.d. couplés à un environnement externe, pose des problèmes pas encore présents aux systèmes classiques. En particulier, le bruit quantique présent dans des équations Langevin est non markovien. Heuristiquement, on peut caractériser un bruit quantique par les propriétés suivants : (i) commutateurs canoniques aux temps égaux (ii) formule de Kubo pour la réponse linéaire (iii) théorème du viriel et surtout (iv) théorème fluctuation-dissipation quantique. Cette dernière propriété garantit pour toute température T>0  la relaxation du système vers un état d’équilibre quantique. Mathématiquement, cette caractérisation du bruit quantique est équivalente à la description traditionnelle de Caldeira et Leggett et de Ford-Kac-Mazur du type système-interaction-bain.

 

Le modèle sphérique a été introduit, par Berlin et Kac en 1952, afin de disposer d’un système exactement résoluble et capable d’avoir des transitions de phases à l’équilibre dont le propriétés ne se conforment pas à la théorie du champ moyen. Nous analysons ici les transitions de phases dynamiques qui se présentent lors du vieillissement, après une trempe du système initialement désordonné ,vers le point critique ou bien dans la phase ordonnée. Par rapport au cas classique (décrit par un bruit blanc markovien), des nouvelles techniques pour la solution explicite des équations Langevin sont requises. Ainsi on peut étudier la pertinence des propriétés non markoviens du bruit quantique sur la dynamique aux temps longs. Au cas de la dynamique quantique à température T=0, plusieurs différences qualitatives par rapport à la dynamique classique sont mises en évidence.

 

[1] R. Araújo, S. Wald, MH , J. Stat. Mech. 053101 (2019) [arxiv:1809.08975]

[2] S. Wald, MH, A. Gambassi, J. Stat. Mech. sous presse (2021) [arxiv:2106.08237]