Mesures de complexités pour suites pseudo-aléatoires

Date/heure
7 octobre 2020
14:00 - 15:00

Oratrice ou orateur
Pierre Popoli

Catégorie d'évènement
Séminaire des doctorants


Résumé

Il existe plusieurs mesures de complexité pour les suites qui établissent des critères pour évaluer si une suite peut être considérée comme pseudo-aléatoire. Nous verrons que les suites automatiques, déterminées par un automate fini déterministe, comme la suite de Thue-Morse, ne rentrent pas dans cette catégorie car leur complexité en sous-mots fait défaut. Cependant, de récents résultats montrent que cette même suite, raréfiée le long des carrés, semble être un meilleur candidat pour être une suite pseudo-aléatoire. Dans cet exposé je parlerai de la généralisation de la borne inférieure de la complexité d’ordre maximal à toute une famille de suites automatiques, comprenant la suite de Rudin-Shapiro par exemple, le long de sous-suites polynomiales. Je terminerai en évoquant la représentation de Zeckendorf et de sa fonction somme des décimales qui rentre dans un cadre plus général que les suites automatiques.