The shifted symplectic geometry of classifying spaces

Date/heure
29 janvier 2026
14:15 - 15:15

Lieu
Salle de séminaires Metz

Oratrice ou orateur
Miquel Cueca Ten (KU Leuven)

Catégorie d'évènement
Séminaire Théorie de Lie, Géométrie et Analyse


Résumé

Let G be a Lie group whose Lie algebra carries an Ad-invariant, nondegenerate symmetric pairing. Then its classifying space has a 2-shifted symplectic structure. In the first part of the talk, I will present concrete models for this structure coming from differential geometry and mathematical physics. In the second part, I will study the analogue of Lagrangian submanifolds and show their relation to Poisson and Dirac structures. This talk is based on joint work with Chenchang Zhu, and with Daniel Álvarez and Henrique Bursztyn.