Modèles prédateurs-proie avec forte compétition : l’émergence de meutes et de la territorialité

Date/heure
26 septembre 2017
10:45 - 11:45

Oratrice ou orateur
Alessandro Zilio

Catégorie d'évènement
Séminaire Équations aux Derivées Partielles et Applications (Nancy)


Résumé

On présentera une séries de travaux en collaboration avec Henri Berestycki sur des systèmes de prédateurs qui interagissent entre eux et avec une seule proie. Ce système est lié au célèbre modèle de dynamique de population de Lotka et Volterra, ainsi que au modèle de Gross et Pitaevskii proposé pour l’étude des condensats de Bose-Einstein, et à  des modèles de réactions chimiques distribuées spatialement. On analysera le cas de prédateurs qui, comme les loups, peuvent se partager en meutes hostiles. Les questions qui on se posera sont de comprendre sous quelles conditions les prédateurs se partagent en meutes, s’il y a un avantage à  avoir des meutes hostiles et finalement de comparer les différents configurations qui émergent dans ce contexte. Plus précisément, on se concentra sur l’analyse des solutions stationnaires, notamment leur stabilité, et sur l’asymptotique du système quand le paramètre de compétition diverge.