Date/heure
11 juillet 2025
10:40 - 11:30
Oratrice ou orateur
Nathan Couchet
Catégorie d'évènement Séminaire des doctorants
Résumé
Dans cet exposé nous regarderons l’apparition de la fonction exponentielle dans les ouvrages de Cauchy et discuterons, textes historiques à l’appui des critères de Cauchy, D’Alembert et d’Hadamard. Ce sera l’occasion de regarder quelques démonstrations d’analyse du 18-19ième siècle. La fonction exponentielle sera caractérisée via sa propriété de morphisme continu, comme l’a fait Cauchy dans son « Cours d’Analyse de l’Ecole Royale Polytechnique » paru en 1821. Son développement en série entière sera mis en lumière également par des textes d’époque. La suite de l’exposé est de constater l’émergence de la série exponentielle dans le contexte matriciel, puis dans le contexte des algèbres de Banach. Dans la première moitié du 20-ième siècle, la norme matricielle de Frobenius, sous-multiplicative, joue un rôle catalyseur poussant les mathématiciens comme Nagumo, Yosida, D.S. Nathan… puis Gelfand à étudier des structures algébriques générales – des C-algèbres (unitaires) – munies d’une norme sous-multiplicative rendant complet l’espace vectoriel sous-jacent : c’est l’émergence de l’étude des anneaux normés complets, connus aujourd’hui sous le nom d’algèbres de Banach. Toujours sous le prisme d’articles d’époque, nous donnerons quelques formules bien connues sur l’exponentielle, les sous-groupes à un paramètres fortement continus, et terminerons par la formule de Lie-Trotter dans le contexte des algèbres de Banach.