Date/heure
27 septembre 2018
14:15 - 15:15
Oratrice ou orateur
Hans Konrad Knörr
Catégorie d'évènement Séminaire Théorie de Lie, Géométrie et Analyse
Résumé
In this talk I will present some recent results for the resolvent norm of linear operators and their implication for the pseudospectrum of matrices. In the presentation I restrict myself to matrices, even though most statements also hold, at least locally, for a certain class of closed linear operators on a separable Hilbert space. As the main theorem we have that for any point in the resolvent set there are directions in which the norm grows at least quadratically in the distance from this point. Besides others this directly implies the well-known fact that level sets of the resolvent norm cannot have interior points. Moreover, I will show how the main theorem can be used to construct a finite polygonal contour inside the pseudospectrum linking a given arbitrary point in the pseudospectrum to an eigenvalue of the matrix. This talk is based on joint work with H. Cornean, H. Garde and A. Jensen.