Date/heure
31 mars 2022
14:15 - 15:15
Oratrice ou orateur
Pascale Harinck (Polytechnique)
Catégorie d'évènement Séminaire Théorie de Lie, Géométrie et Analyse
Résumé
(Travail commun avec P. Delorme). Soit $G$ un groupe de Lie réductif réel, muni d’une involution $\sigma$ et $\Gamma$ un sous-groupe discret cocompact. Nous établissons une formule des traces relative, en lien avec $\Gamma$ et $H=G^\sigma$, exprimant la somme de certaines intégrales orbitales de $f\in C_c^\infty(G)$ en terme de coefficients généralisés de représentations unitaires irréductibles de $G$. Lorsque $G/H$ admet une série discrète relative $\pi_0$, l’existence de pseudocoefficient relatif pour $\pi_0$ à support « petit » implique, via la formule des traces relative, que $\pi_0$ intervient dans la décomposition spectrale de $L^2(\Gamma\backslash G)$. Nous étudions l’existence de tels pseudocoefficients pour les espaces hyperboliques et les espaces symétriques de type $G(\mathbb{C})/G(\mathbb{R})$.