Un flot de gradient sur l’espace des contrôles avec condition initiale irrégulière

Date/heure
26 septembre 2024
10:45 - 11:45

Lieu
Salle de conférences Nancy

Oratrice ou orateur
Paul Gassiat (Paris Dauphine)

Catégorie d'évènement
Séminaire Probabilités et Statistique


Résumé

On considère un problème de contrôle consistant à trouver une trajectoire reliant un point initial x à un point cible y, le système se déplaçant uniquement dans certaines directions admissibles. On suppose que les champs de vecteurs correspondants satisfont la condition de Hörmander, de telle sorte que par un théorème classique (Chow-Rashevskii), il existe des trajectoires qui satisfont cette contrainte. Une manière naturelle d’essayer de résoudre ce problème est via un flot de gradient sur l’espace des contrôles. Cependant, la dynamique correspondante peut avoir des point-selles, et pour obtenir un résultat de convergence il faut donc faire des hypothèses (par exemple probabilistes) sur la condition initiale. Dans ce travail, nous considérons le cas où cette initialisation est irrégulière, que nous formulons grâce à la théorie des trajectoires rugueuses de Lyons. Dans des cas simples, on prouve que le flot de gradient converge vers une solution, si la condition initiale est une trajectoire d’un mouvement Brownien (ou d’un processus de régularité plus faible). La preuve combine des idées de calcul de Malliavin avec des inégalités de Łojasiewicz. Une motivation possible pour nos travaux vient de l’entraînement de réseaux de neurones résiduels profonds, dans un régime où le nombre de paramètres par couche est fixé, et la dimension du vecteur de données est élevée. Il s’agit d’un travail en collaboration avec Florin Suciu (Paris Dauphine).