Date/heure
18 juin 2025
10:45 - 11:45
Oratrice ou orateur
Nathan Couchet
Catégorie d'évènement Séminaire des doctorants
Résumé
Cet exposé propose d’investiguer les modèles du pendule simple et du pendule double chers à la mécanique classique. Nous ferons bien sûr tous les rappels nécessaires de mécanique et le but de l’exposé est d’illustrer certains théorèmes d’analyse et d’algèbres bien familiers à un mathématicien. Nous exposerons aussi, chemin faisant, certains passages d’articles originaux dus à Neumann (1929) et Nagumo (1936).
Le pendule simple modélise une masse en mouvement, attachée à un fil inextensible et de masse négligeable. On s’intéresse, via la mécanique ponctuelle, à la période des oscillations du pendule simple après avoir mis en évidence l’équation de son mouvement grâce au principe fondamental de la dynamique. Une fois linéarisée, cette équation du mouvement est précisément de type « oscillateur harmonique » et la période des oscillations dépend visiblement de la longueur du fil. On s’interroge alors : Quelle(s) information(s) sur la période a-t-on perdu en linéarisant ?
Dans le modèle du pendule double, on considère deux tiges de même masse, reliées à un ressort. On s’intéresse toujours aux oscillations des tiges selon plusieurs conditions initiales. Le principe fondamental de la dynamique dans le cadre du modèle du solide indéformable conduit à un système de deux équations non-linéaires couplées. Pour tirer des informations de ce système, on les linéarise (hypothèse des petits angles) et on obtient une équation de l’oscillateur harmonique bi-dimensionnelle. La dynamique du système est gouvernée par une matrice symétrique définie positive et le théorème spectral, couplé au calcul fonctionnel matriciel nous permet de trouver une solution de cette équation, analogue à ce qu’il se passe pour l’équation de l’oscillateur harmonique du pendule simple. Enfin, l’exposé vise à plonger l’équation de l’oscillateur harmonique dans le contexte des C*-algèbres, monde tout naturel pour le calcul fonctionnel.