Phénomènes de positivité dans les algèbres de Hecke associées aux groupes de Coxeter arbitraires

Date/heure
27 juin 2016
15:30 - 16:30

Oratrice ou orateur
Thomas Gobet

Catégorie d'évènement
Séminaire de géométrie complexe


Résumé

Les algèbres de Hecke associées aux groupes de Weyl finis ou
affines sont centrales en théorie des représentations, en géométrie et en
topologie de petite dimension notamment. En 1979, motivés par des
questions reliées aux singularités des variétés de Schubert, Kazhdan et
Lusztig ont introduit deux bases (dites canoniques) de ces algèbres. Ils
en ont donné une définition purement combinatoire, qui se généralise aux
algèbres de Hecke associées aux groupes de Coxeter arbitraires. Ils ont en
outre formulé une conjecture de positivité: la matrice de changement de
base entre l’une des bases canoniques et la base dite standard de
l’algèbre de Hecke ne devrait avoir pour coefficients que des polynômes à 
coefficients positifs. Si cette conjecture a été rapidement démontrée par
Kazhdan et Lusztig (1980) dans le cas des groupes de Weyl en utilisant des
techniques géométriques, l’absence de telles techniques dans le cas
général a longtemps constitué un obstacle à  une approche générale,
jusqu’aux travaux de Soergel (2007): Soergel a proposé un remplacement à 
la géométrie (a priori) inexistante dans le cas général, ce qui a permis
une preuve récente de la conjecture de positivité en toute généralité par
Elias et Williamson (2014).

Après quelques rappels sur les groupes de Coxeter, leurs algèbres de Hecke
et les groupes d’Artin-Tits associés, nous tenterons d’expliquer l’idée de
la construction de Soergel, qui repose sur une technique de
catégorification, sans entrer dans les détails techniques. Nous
expliquerons comment cette approche peut également être utilisée pour
résoudre certaines généralisations de la conjecture de positivité énoncées
par Dyer, et reliées à  des problèmes touchant aux groupes d’Artin-Tits.