Primes in arithmetic progressions: The Riemann Hypothesis – and beyond!

Date/heure
26 février 2019
16:30 - 17:30

Oratrice ou orateur

Catégorie d'évènement
Colloquium


Résumé

James Maynard (University of Oxford)

260px-James_Maynard_MFO_2013

James Maynard est un théoricien des nombres, professeur à l’université d’Oxford. Il s’est fait connaître en donnant une nouvelle preuve du théorème de Zhang concernant l’infinité des paires de nombres premiers séparés d’une quantité bornée.

En 2016, il a résolu une conjecture d’Erdös sur les grands écarts entre nombres premiers. C’est la conjecture résolue pour laquelle Erdös avait offert le prix le plus élevé.

Abstract: One of the oldest problems about prime numbers is asking how many primes there are of a given size in an arithmetic progression. Dirichlet’s famous theorem shows that there are large primes in the progression unless there is an obvious reason why not, but more refined questions lead quickly to statements equivalent to versions of the Riemann Hypothesis, which unfortunately remains unsolved.