Date/heure
7 janvier 2021
14:15 - 15:15
Oratrice ou orateur
Friedrich Wagemann
Catégorie d'évènement Séminaire Théorie de Lie, Géométrie et Analyse
Résumé
Il s’agit d’un travail en commun avec Bénoit Dhérin (Dublin) publié en 2015. Le dual d’une algèbre de Lie g (réelle de dimension finie) est une variété de Poisson grâce au crochet de Kostant-Kirillov-Souriau (KKS). Le starproduit de Simone Gutt en fournit une quantification par déformations et est lié à l’intégration d’une algèbre de Lie en groupe de Lie. Une algèbre de Leibniz (à gauche, réelle de dimension finie) est un espace vectoriel h muni d’un crochet qui vérifie que le crochet est une dérivation de lui-même: [x,[y,z]] = [[x,y],z] + [y,[x,z]]. C’est une généralisation non forcément antisymétrique des algèbres de Lie. D’o๠la question (d’Alan Weinstein) de savoir dans quel sens les duaux d’algèbres de Leibniz sont des variétés de Poisson et si elles admettent une quantification par déformation. Nous répondons dans notre travail avec B. Dhérin à ces deux questions. La démarche est la suivante: Cataneo-Dhérin-Weinstein ont introduit des micromorphismes entre germes de variétés symplectiques afin de rendre la quantification fonctorielle. Dans leur théorie, des fonctions génératrices de micromorphismes jouent le rôle de phase dans des intégrale oscillantes (opérateurs Fourier intégraux). L’expansion en phase stationnaire de ces intégrales fournit alors la quantification par déformations. Nous construisons une fonction génératrice associée au crochet de Leibniz et obtenons ainsi une quantification par déformations des duaux d’algèbres de Leibniz. La notion de variété de Poisson généralisée qui en découle (limite semiclassique) est très faible. Le crochet de Poisson généralisée est l’évaluation en 0 en une variable du crochet KKS.