Séminaire Commun de Géométrie – Finitude des groupes hyperboliques

Date/heure
9 janvier 2023
14:00 - 16:00

Oratrice ou orateur
Gilles Courtois

Catégorie d'évènement
Séminaire de géométrie complexe


Résumé
Titre:
Théorème de finitude pour les groupes hyperboliques
Résumé:
Les théorèmes de finitude en géométrie riemannienne ont une longue histoire.  En voici un
exemple particulier : « Il existe un nombre fini de variétés différentiables compactes sans bord de dimension n portant une métrique de courbure sectionnelle et diamètre Diam vérifiant -a2 ≤ Sec <0 et Diam ≤ D.
A la fin des années 80, M. Gromov a introduit une notion de courbure négative pour les espaces métriques qui englobe une classe d’espaces beaucoup plus vaste que les variétés riemanniennes. On peut alors envisager  des résultats de finitude pour ces espaces.
Le but de l’exposé est d’expliquer la notion d’espace et de groupe hyperbolique au sens de Gromov et de décrire le théorème suivant : (en collaboration avec G. Besson, S. Gallot et A. Sambusetti)
« Le nombre de groupes sans torsion, non élémentaires, δ-hyperboliques et d’entropie inférieure à H
est fini et majoré par un nombre qui dépend de δ et H. »
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Comme chaque séminaire commun de géométrie, il sera constitué d’un premier exposé de type « colloquium » de 14h à 14h45, puis d’une pause thé-gâteaux de 14h45 à 15h15, puis de la suite de l’exposé de niveau recherche de 15h15 à 16h. Venez nombreux !