ACCUEIL / Events / Séminaire de groupes algébriques
Date/heure
16 juin 2025
14:00 - 15:00
Lieu
Salle de conférences Nancy
Oratrice ou orateur
Alex Loué
Catégorie d'évènement
Séminaire de géométrie complexe
Résumé
Titre : Constantes de Kazhdan pour certains groupes agissant sur des immeubles.
Résumé : La propriété (T) de Kazhdan est une propriété relative à la théorie des représentations unitaires. Grossièrement, on dit qu’un groupe a la propriété (T) de Kazhdan si, à chaque fois qu’une représentation admet « presque » des vecteurs invariants, alors il existe des vecteurs invariants. Il est possible de donner une version quantitative de cette propriété, au moyen d’un seuil de déplacement minimal pour les vecteurs presque invariants. Cette quantité est habituellement appelée la constante de Kazhdan.
Si la valeur exacte de cette constante optimale est d’intérêt limité (notamment parce qu’elle dépend du choix d’un ensemble de générateurs), il est néanmoins très intéressant de chercher pour quelles représentations unitaires et quelles configurations de vecteurs cet optimum est atteint.
Dans cet exposé, nous nous intéresserons donc au calcul des constantes de Kazhdan pour certains groupes agissant sur des immeubles. Après une brève introduction à la propriété (T) de Kazhdan, nous verrons comment il est possible d’estimer ces constantes en étudiant la théorie des représentations d’un objet local, plus simple à étudier. Dans le cas particulier des immeubles affines de type A2, cela aboutit en un calcul de la valeur exacte de la constante de Kazhdan.