Date/heure
9 décembre 2025
10:45 - 11:45
Oratrice ou orateur
Simon Bartolacci
Catégorie d'évènement Séminaire des doctorants
Résumé
Je ne vois pas l’avenir. Et c’est bien là le souci : les problèmes d’optimisation liés à la prise de décision concernent bien trop souvent des décisions futures.
Optimiser l’espérance mathématique en fonction des événements envisageables ? Encore faut-il en connaître les probabilités.
Nous avons toutefois connaissance du passé. Une approche consiste alors à résoudre, dans un premier temps, le problème empirique construit à partir de ces données. La solution que nous obtiendrons sera-t-elle proche d’une solution optimale pour le problème de départ ? Combien de données sont nécessaires pour réaliser cette approximation ? Nous verrons, dans un premier temps, comment l’optimisation stochastique traite ces questions.
Nous discuterons ensuite des limites du critère de l’espérance, notamment dans les cas où un risque de grande perte est compensé par l’espoir de grands bénéfices. Ces limites motivent l’introduction de mesures de risque comme critère dans les problèmes d’optimisation stochastique. Nous en aborderons, pour finir, une généralisation multivariée et présenterons les premiers résultats associés.