Géométrie anti-de Sitter et variétés de Gromov-Thurston

Date/heure
26 juin 2023
15:30 - 16:30

Oratrice ou orateur
Daniel Monclair

Catégorie d'évènement
Séminaire de géométrie différentielle


Résumé

Les variétés anti-de Sitter (i.e. lorentziennes à courbure -1) globalement hyperboliques de dimension 2+1 sont bien comprises depuis les travaux de Mess qui décrivent leurs espaces de modules. Le cas de la dimension plus grande reste assez énigmatique, et même les topologies possibles ne sont pas connues.
Une variété lorentzienne globalement hyperbolique est toujours difféomorphe à un produit MxR. Dans les exemples connus, M est une variété hyperbolique. Je présenterai une construction, issue d’un travail en commun avec Jean-Marc Schlenker et Nicolas Tholozan, d’exemples pour lesquels M est une variété de Gromov-Thurston (une famille de variétés non hyperboliques à courbure négative).