Date/heure
25 mars 2022
11:00 - 12:00
Oratrice ou orateur
Pierre Bousquet
Catégorie d'évènement Séminaire EDP, Analyse et Applications (Metz)
Résumé
Sur un ouvert $\Omega$ régulier, l’ensemble des fonctions lisses $C^{\infty}(\overline{\Omega})$ est dense dans les espaces de Sobolev $W^{1,p}(\Omega)$ (avec $1\leq p <\infty$). Pourtant, minimiser une fonctionnelle du calcul des variations sur $C^{\infty}(\overline{\Omega})$ ou sur $W^{1,p}(\Omega)$ peut conduire à des résultats différents: c’est le phénomène de Lavrentiev.
Il s’agit dans cet exposé d’identifier une large classe de fonctionnelles pour laquelle ce phénomène ne se produit pas. La preuve repose sur de nouvelles techniques d’approximation pour des versions paramétriques des problèmes variationnels considérés.