Date/heure
20 mai 2022
11:00 - 12:00
Oratrice ou orateur
Jimmy Payet
Catégorie d'évènement Séminaire EDP, Analyse et Applications (Metz)
Résumé
On considère des modèles de théorie quantique des champs décrivant l’évolution d’une particule non-relativiste couplée à un champ quantifié. L’énergie d’un tel système est associée à un opérateur auto-adjoint, un hamiltonien, agissant sur un espace de Hilbert approprié. Dans cet exposé, nous nous intéressons à la minimisation de l’énergie quasi-classique de ce système, c’est-à-dire l’énergie lorsque le champ se trouve dans un état cohérent. Les minimiseurs d’une telle énergie sont appelés états fondamentaux quasi-classiques. Nous verrons que le problème de minimisation peut se réduire à la minimisation d’une fonctionnelle de Hartree, ou d’un système couplé Maxwell-Schrödinger, selon le modèle considéré. Nous montrerons l’existence et l’unicité d’un état fondamental quasi-classique pour ces modèles. Enfin, nous verrons que ces états permettent de décomposer l’énergie fondamentale du modèle en deux parties : une quasi-classique, calculée lors de la minimisation sur les états cohérents, et une autre correspondant à la contribution des états excités.