Séminaire : Plongements des surfaces à la courbure distributionnelle non-negative

Date/heure
10 juin 2022
11:00 - 12:00

Lieu
Salle de séminaires Metz

Oratrice ou orateur
Reza Pakzad

Catégorie d'évènement
Séminaire EDP, Analyse et Applications (Metz)


Résumé

On présente d’abord les notions de base et quelques résultats connus sur les plongements isométriques de régularité faible des variétés riemanniennes dans les espaces euclidiennes en basse dimension, sur leurs deux versants de flexibilité (h-principe) et rigidité, dont quelques résultats récents. En particulier, on note que Borisov, et le suivant, Conti-De Lellis et Székelyhidi, ont démontré la convexité de l’image d’un tel plongement dans ${\mathbb R}^3$ d’une surface sans bord si sa métrique est régulière de classe $C^{2,\beta}$, la courbure est positive, et le plongement est de classe $C^{1,\alpha}$ pour $\alpha>2/3$. On discute la généralisation de ce résultat au cas où la métrique est seulement de classe $C^{1,\alpha}$ et la courbure au sens distributionnel est seulement non-négative. Pour établir cette généralisation, une nouvelle approche moyennant l’étude de l’équation de Monge-Ampère au sens très faible devient nécessaire.