Durant ce séminaire nous étudierons la théorie de la diffusion pour une famille d’opérateurs de Schrödinger. Ces opérateurs possèdent des spectres présentant un changement de multiplicité et donc des seuils plongés. Certains opérateurs possèdent également des résonances aux seuils. Nous construirons alors une algèbre à laquelle appartient les opérateurs d’onde. L’étude du quotient de cette algèbre par l’idéal des opérateurs compacts mène directement à l’existence de théorèmes d’indice en théorie de la diffusion. Ces théorèmes peuvent alors s’interpréter comme des théorèmes de Levinson en présence de seuils plongés et de discontinuités de la matrice de diffusion. La dépendance de ces résultats en fonction de certains paramètres sera également discutée. Aucun prérequis algébrique n’est nécessaire pour cette présentation.