Date/heure
30 avril 2025
10:45 - 12:00
Lieu
Salle de conférences Nancy
Oratrice ou orateur
Séréna Pedon
Catégorie d'évènement Séminaire des doctorants
Résumé
La fonction Zêta de Riemann est probablement l’un des objets les plus connu en Théorie Analytique des Nombres, puisqu’elle possède encore aujourd’hui son lot de mystère et qu’elle est liée à l’une des plus célèbres conjectures des mathématiques: l’hypothèse de Riemann.
Cette fonction, bien que très intéressante à étudier par elle-même, fait en réalité partie d’une famille plus large de fonction que l’on appelle Série de Dirichlet. Définie par Dirichlet en 1837 pour démontrer le théorème de la progression arithmétique, elles ne seront vraiment étudiées qu’à partir de 1894 dans les travaux de thèses d’Eugène Cahen.
Dans cet exposé, j’introduirai les notions de fonctions arithmétiques et leur série de Dirichlet afin d’en exhiber leur propriétés les plus intéressantes et utiles en Théorie des Nombres. Je présenterai également quelques fonctions arithmétiques classiques, leur série de Dirichlet associée, et leur lien avec la fonction Zêta qui fera office de fil rouge pour bien comprendre toutes les notions.