Sums of Kloosterman sums with multiplicative coefficients

Date/heure
23 juin 2022
14:00 - 15:00

Lieu
Salle Döblin

Oratrice ou orateur
Igor Shparlinski (University of New South Wales)

Catégorie d'évènement
Analyse et théorie des nombres


Résumé

We consider Kloosterman sums
Kp(n)=x=1p1exp(2πi(nx+x1)/p)
modulo a prime p and define their sums
Mp(N)=nNμ(n)Kp(n)andTν,p(N)=nNτν(n)Kp(n)
twisted by the Möbius function μ(n) and by the ν-fold divisor function τν(n). Fouvry, Kowalski & Michel (2014) and Kowalski, Michel & Sawin (2018) improved the trivial bounds
Mp(N)NandTν,p(N)N(logN)ν1.
for Np3/4+ε and Np2/3+ε, respectively (for any fixed ε>0). We will explain the ideas of the recent joint work with Maxim Korolev (2020) where both these thresholds are lowered down to Np1/2+ε. We will also discuss some open questions.