K-theory for crossed products by Bernoulli shifts

Date/heure
11 avril 2024
14:15 - 15:15

Lieu
Salle de séminaires Metz

Oratrice ou orateur
Siegfried Echterhoff (Münster)

Catégorie d'évènement
Séminaire Théorie de Lie, Géométrie et Analyse


Résumé

For a large class of unital $C^*$-algebras $A$, we  calculate the $K$-theory of reduced crossed products $A^{\otimes G}\rtimes_rG$ of Bernoulli shifts  by groups satisfying the Baum-Connes conjecture. In particular, we give explicit formulas for finite-dimensional $C^*$-algebras, UHF-algebras, rotation algebras, and several other examples. As an application, we obtain a formula for the $K$-theory of reduced $C^*$-algebras of wreath products $H\wr G$ for large classes of groups $H$ and $G$.
Our results are motivated and generalize earlier results of Xin Li about the K-theory of lamplighter groups.

(joint work with Sayan Chakraborty, Julian Kranz, and Shintaro Nishikawa)