Date/heure
26 novembre 2020
10:45 - 11:45
Oratrice ou orateur
Samuel Herrmann
Catégorie d'évènement Séminaire Probabilités et Statistique
Résumé
Les diffusions (famille de solutions d’équations différentielles stochastiques) jouent un rôle primordial en modélisation stochastique avec de nombreux champs d’application. Il est donc essentiel de pouvoir simuler précisément les trajectoires de ces processus et toute variable aléatoire qui y serait liée. Dans cette communication, nous nous intéresserons en particulier au premier instant de sortie d’un intervalle donné. Nous considérons donc (Xt) la solution de dXt = μ(Xt)dt + dBt, X0 ∈ ]a,b[, t≥0, o๠(Bt) est un mouvement brownien et l’objectif se résume à la simulation numérique de Ï„_ab = inf{t≥0: Xt ∉ ]a,b[}. Cette variable aléatoire dépend de la trajectoire du processus et non simplement d’une marginale à un temps fixé, ce qui rend plus compliquée sa simulation numérique. Une première approche consiste à introduire des schémas numériques basés sur la discrétisation temporelle. Ces schemas permettent d’obtenir un squelette de la diffusion et d’en déduire une approximation du temps de sortie. Une autre façon d’appréhender le problème de simulation est d’utiliser une méthode de rejet pour simuler directement et de façon exacte le temps de sortie. C’est cette méthode que je souhaite vous présenter. Une première étude sur la simulation exacte notamment des marginales de diffusion fut introduite par Beskos et Roberts puis complétée par différents travaux par la suite. En ce qui concerne les temps d’arrêt, Cristina Zucca et moi-même avons étudié dans un premier temps les premiers instants de passage des diffusions avant de nous intéresser aux temps de sortie dont la complexité (au niveau des algorithmes) est bien supérieure. Références : https://dev-iecl.univ-lorraine.fr/ProbaStat/covid/downloads/2020-11-26_Samuel_Herrmann_abstract.pdf