Date/heure
7 avril 2017
11:00 - 12:00
Oratrice ou orateur
Anne-Sophie Bonnet-Ben Dhia
Catégorie d'évènement Séminaire EDP, Analyse et Applications (Metz)
Résumé
On considère des matériaux électromagnétiques qui sont tels que, dans une certaine gamme de fréquences, la permittivité diélectrique a une partie imaginaire faible et une partie réelle négative. Ceci se produit par exemple dans les métaux tels que l’argent, aux fréquences optiques. Pour de tels matériaux, les coins sont le lieu de phénomènes singuliers très surprenants. En particulier, une partie de l’énergie des ondes peut être capturée par le coin, donnant lieu à un phénomène dit de trou noir. Dans cette présentation, nous proposons une analyse mathématique de ce phénomène dans le cas bidimensionnel, reposant sur une description détaillée des singularités de coins pour l’équation de Helmholtz avec des coefficients changeant de signe. Nous montrons que ces équations peuvent être mal posées dans le cadre fonctionnel usuel, puis nous proposons et justifions un nouveau cadre, incluant des fonctions singulières hyper-oscillantes, dans lequel le caractère bien posé peut être rétabli. Sur le plan numérique, nous nous intéressons à l’approximation de la solution par éléments finis. Dans les configurations sans phénomène de trou noir, nous montrons qu’il suffit d’imposer certaines règles de maillage au voisinage des coins pour assurer la convergence de la méthode. En revanche, ceci n’est pas suffisant en présence d’ondes de trou noir hyper-oscillantes. La solution que nous avons trouvée est alors d’utiliser des PML (Perfectly Matched Layers) au voisinage des coins. Ces approches sont validées par différents résultats numériques.