Sobolev solutions of parabolic equation in a complete riemannian manifold

Date/heure
27 septembre 2019
11:00 - 12:00

Oratrice ou orateur
Éric Amar

Catégorie d'évènement
Séminaire EDP, Analyse et Applications (Metz)


Résumé

We study Sobolev estimates for the solutions of parabolic equations acting on a vector bundle, in a complete, compact or non compact, riemannian manifold $M$. The idea is to introduce geometric weights on $M$. We get global Sobolev estimates with these weights. As applications, we find and improve « classical results », i.e. results without weights, by use of a Theorem by Hebey and Herzlich. As an example we get Sobolev estimates for the solutions of the heat equation on $p$-forms when the manifold has « weak bounded geometry  » of order $1$.