Some uniqueness problems in $mathbb{H}^2timesmathbb{R}$.

Date/heure
25 mars 2014
14:00 - 15:00

Oratrice ou orateur
Anna Menezes

Catégorie d'évènement
Séminaire de géométrie différentielle


Résumé

In this talk we will consider two uniqueness problems in $mathbb{H}^2timesmathbb{R}$. First, we will prove a halfspace theorem for an ideal Scherk graph $S$ over a polygonal domain $D$ in $mathbb{H}^2$, that is, we will show that a properly immersed minimal surface contained in $Dtimesmathbb{R}$ and disjoint from $S$ is a translate of $S$. Second, we will consider a multi-valued Rado theorem for small perturbations of the Helicoid. More precisely, we will prove that for certain small perturbations of the boundary of a (compact) helicoid there exists only one minimal disk with that boundary.