Date/heure
18 avril 2016
15:30 - 16:30
Oratrice ou orateur
Ronan Terpereau
Catégorie d'évènement Séminaire de géométrie complexe
Résumé
Cet exposé est à propos d’un travail en cours avec Jérémy Blanc (Bâle) et Andrea Fanelli (Bâle). Le groupe de Cremona est le groupe des transformations birationnelles de l’espace projectif complexe de dimension n. Ce groupe n’est pas algébrique dès lors que n>1, mais on peut espérer (au moins lorsque n est petit) classifier ses sous-groupes connexes algébriques maximaux.
En dimension 2, la classification est ancienne et bien connue (F. Enriques, 1893). En dimension 3, la première étude rigoureuse fà»t effectuée par H. Umemura dans les années 1980 dans une série de cinq papiers (plutôt longs et techniques).
Dans cet exposé, j’expliquerai comment on peut espérer redémontrer les résultats d’Umemura d’une façon beaucoup plus simple et géométrique à l’aide (d’un usage élémentaire) de la théorie de Mori. Je terminerai en discutant plusieurs généralisations possibles des résultats d’Umemura via cette nouvelle approche.