Structures modérées en topologie, géométrie et théorie des nombres

Date/heure
15 mars 2016
16:30 - 17:30

Oratrice ou orateur

Catégorie d'évènement
Colloquium


Résumé

François Loeser

DSCF0412 (1)

À l’origine, les structures modérées (géométrie o-minimale) ont constitué un cadre général permettant d’exclure certains objets  »pathologiques » et de disposer d’un formalisme agréable et flexible dans lequel les objets ont des propriétés topologiques et géométriques raisonnables. Plus récemment elles ont permis d’effectuer des avancées spectaculaires en théorie des nombres. Nous présenterons un panorama général de ces questions, en mettant l’accent principal sur les structures réelles tout en mentionnant des progrès récents dans d’autres contextes comme celui de la géométrie non- archimédienne.