Date/heure
16 janvier 2018
16:30 - 17:30
Catégorie d'évènement Colloquium
Résumé
Élise Janvresse (Université de Picardie)
Résumé : Il est bien connu que les suites de Fibonacci croissent exponentiellement vite. En 2000, Viswanath a introduit les suites de Fibonacci aléatoires, définies par la relation de récurrence suivante :
F(n+1)= F(n)±F(n-1)
où le signe + ou – est donné par une suite de tirages à pile ou face.
Nous nous intéresserons dans cet exposé à la croissance des suites de Fibonacci aléatoires et de leurs généralisations.
Élise Janvresse est une spécialiste de théorie ergodique et probabilités. Après s’être intéressée au comportement asymptotique des systèmes de particules, son spectre scientifique s’est élargi aux suites de Fibonacci aléatoires, loi de Benford, marches aléatoires sur la sphère et le groupe orthogonal, applications au traitement d’images cérébrales, suspensions de Poisson et systèmes dynamiques en mesure infinie parmi d’autres sujets.
Elle est aussi une excellente vulgarisatrice, auteure de plusieurs livres, exposés grand public et articles dans de nombreux magazines.