Date/heure
10 décembre 2020
14:45 - 15:45
Oratrice ou orateur
Simona Rota Nodari
Catégorie d'évènement Séminaire Théorie de Lie, Géométrie et Analyse
Résumé
Dans cet exposé, après avoir énoncé un résultat concernant l’unicité et la non-dégénérescence des solutions radiales positives d’une classe d’équations elliptiques semi-linéaires, je m’intéresserai au cas particulier d’une équation de Schrödinger avec une non-linéarité donnée par une différence de puissances, i.e. $g(u)=u^q-u^p-mu u$ pour $p>q>1$ et $mu$ une constante positive. Dans ce cas, la non-dégénérescence de l’unique solution positive permet d’en analyser le comportement dans différents régimes du paramètre $mu$ et donne l’unicité des minimiseurs de l’énergie à masse fixé dans certains régimes. Mon exposé est basé sur un travail en collaboration avec Mathieu Lewin.