Une inégalité pour la norme l_1 des variétés complètes (An l_1-norm inequality for complete manifolds) (en visio)

Date/heure
13 février 2023
15:30 - 16:30

Oratrice ou orateur
Caterina Campagnolo

Catégorie d'évènement
Séminaire de géométrie différentielle


Résumé
Dans les années 80, Gromov a introduit un nouvel invariant topologique, le volume simplicial. Il a montré l’existence d’une connexion profonde entre cet invariant topologique et la géométrie des variétés au travers de son « inégalité principale », reliant le volume simplicial au volume sous certaines conditions de courbure.
Depuis, la communauté a essayé de généraliser et d’améliorer cette relation, en affaiblissant les hypothèses sur la courbure, en étendant ou en améliorant l’inégalité.
Dans un travail avec Shi Wang, nous étendons les résultats de Besson-Courtois-Gallot sur la norme l_1 de la classe fondamentale d’une variété fermée à toutes les classes d’homologie d’une variété complète. Nos inégalités sont plus précises que celles de Gromov et s’expriment en termes de l’exposant critique de la variété.
Je définirai les objets nécessaires, donnerai le contexte et enfin les idées principales de la preuve.
\  \

Abstract : In the 80’s, Gromov introduced a new topological invariant, the simplicial volume of a manifold. He showed its deep connection with geometry by proving his « Main inequality », relating the simplicial volume to the volume of the manifold under some curvature assumptions.

Since then, the community has tried to generalize and enhance this relation by weakening the curvature assumptions, extending, or improving the inequality.
In joint work with Shi Wang, we extend the results of Besson-Courtois-Gallot about the l_1-norm of the fundamental class of a closed manifold to all homology classes of a complete manifold. Our inequalities are sharper than Gromov’s original ones and are expressed in terms of the critical exponent of the manifold.
I will define all necessary objects, give some context and the main ideas of the proof.