Date/heure
16 janvier 2023
15:30 - 16:30
Lieu
Salle de conférences Nancy
Oratrice ou orateur
Brice Flamencourt
Catégorie d'évènement Séminaire de géométrie différentielle
Résumé
Les structures localement conformément produit (LCP) apparaissent sur les variétés conformes compactes lorsque l’on considère une connexion qui est localement la connexion de Levi-Civita d’une métrique, mais pas globalement. Le relèvement d’une telle connexion au revêtement universel de la variété LCP est la connexion de L-C d’une métrique produit, donnant sont nom à la structure.
Dans cet exposé, on décrira les propriétés fondamentales de ces structures, et on expliquera comment se construisent les exemples connus de variétés LCP, afin d’initier une classification. On étudie certains invariants naturels, et on exhibe également un lien avec la théorie des corps de nombres.
Abstract : The locally conformally product structures (LCP) arise on compact conformal manifolds when we consider a connection which is locally but not globally the Levi-Civita connection of a metric. The lift of such a connection to the universal cover of the LCP manifold is the L-C connection of a product metric, explaining the name of this structure.
In this talk, we will expose the properties of the LCP structures and we will construct some examples of LCP manifolds in order to initiate a classification. We introduce several invariants on LCP manifolds and we show that there exists a link with number fields theory.