Problème isodiamétrique, densité et rectifiabilité

Date/heure
21 novembre 2022
15:30 - 16:30

Lieu
Salle de conférences Nancy

Oratrice ou orateur
Antoine Julia

Catégorie d'évènement
Séminaire de géométrie différentielle


Résumé

Un ensemble de l’espace euclidien est rectifiable s’il peut être couvert presque entièrement par des sous-variétés de classe $C^1$, ce qui permet de l’étudier avec des outils d’analyse. Une propriété importante de tels ensembles est que leur mesure de Hausdorff a densité égale à 1 presque partout.
Mon exposé portera sur la question opposée : est-ce que la densité  implique la rectifiabilité ?
Le problème est ouvert dans les espaces métriques généraux et assez lié au
problème isodiamétrique : c’est-à-dire de trouver l’ensemble de volume maximal parmi les ensembles de diamètre fixé. Je donnerai une réponse dans le cas des groupes de Lie homogènes qui sont des modèles naturels pour la question. (C’est un travail en commun avec Andrea Merlo.)