Date/heure
19 février 2024
15:30 - 16:30
Lieu
Salle de conférences Nancy
Oratrice ou orateur
Samuel Bronstein
Catégorie d'évènement Séminaire de géométrie différentielle
Résumé
Une surface presque-fuchsienne est une surface minimale dans une variété hyperbolique, dont la seconde forme fondamentale est majorée par 1. Dans ce cas, elle est plongée et on peut identifier la variété hyperbolique ambiante avec le fibré normal à notre surface. Cela amène à l’étude des représentations presque-fuchsiennes de groupes de surfaces dans Isom(ℍn)\mathrm{Isom}(\mathbb H^n), qui admettent un disque presque-fuchsien équivariant. On discutera d’abord du cas de Isom(ℍ3)\mathrm{Isom}(\mathbb H^3), dans lequel les représentations presque-fuchsienne forment un voisinage connexe de l’ensemble des représentations fuchsiennes, et ensuite nous verrons un exemple dans ℍ4\mathbb H^4, pour lequel la variété hyperbolique quotient est un fibré en disques de degré 1 sur une surface.