Date/heure
15 février 2021
14:00 - 15:00
Lieu
Salle de géométrie virtuelle
Oratrice ou orateur
Jérôme Bertrand
Catégorie d'évènement
Séminaire de géométrie différentielle
Résumé
The Gauss curvature measure of a pointed Euclidean convex body is a measure on the unit sphere which extends the notion of Gauss curvature to non-smooth bodies. Alexandrov’s problem consists in finding a convex body with given curvature measure. In Euclidean space, A.D. Alexandrov gave a necessary and sufficient condition on the measure for this problem to have a solution.
In this paper, we address Alexandrov’s problem for convex bodies in the hyperbolic space