Date/heure
1 février 2024
10:45 - 11:45
Lieu
Salle de conférences Nancy
Oratrice ou orateur
Lisa Hartung (Johannes Gutenberg University Mainz)
Catégorie d'évènement Séminaire de Théorie des Nombres de Nancy-Metz
Résumé
We study the maximum of a random model for the Riemann zeta function (on the critical line at height T) on the interval $[-(\log T)^\theta,(\log T)^\theta]$, where $\theta= (\log \log T)^{-a}$, with $0<a<1$. We obtain the leading order as well as the logarithmic correction of the maximum.
As it turns out, a good toy model is a collection of independent BRWs, where the number of independent copies depends on $\theta$. In this talk I will try to motivate our results by mainly focusing on this toy model. The talk is based on joint work in progress with L.-P. Arguin and G. Dubach.
Séminaire commun avec l’équipe Probabilités et Statistique.