Date/heure
19 octobre 2021
09:15 - 10:15
Lieu
Salle de conférences Nancy
Oratrice ou orateur
Christophe Zhang
Catégorie d'évènement Équations aux dérivées partielles
Résumé
On s’intéresse à un problème de contrôle approché de l’équation de la chaleur par des « formes » : des contrôles internes, qui en espace sont des fonctions caractéristiques d’ensembles de mesures uniformément bornées.
En partant de l’exemple de la méthode HUM, on montre comment des outils d’analyse et d’optimisation convexes peuvent être utilisés pour étudier les propriétés de contrôlabilité d’un tel système, comportant des contraintes sur le contrôle. Pour faire cela, on voit la recherche de contrôles comme la recherche de contrôles optimaux pour un certain coût bien choisi. En posant ensuite ce problème de contrôle optimal comme un problème d’optimisation convexe sous contraintes, on peut appliquer des résultats généraux d’optimisation convexe pour conclure.
L’outil central de cette approche est la notion de dualité de Fenchel-Rockafellar, qui associe à un problème d’optimisation (dit primal) un problème dit dual. Ces deux problèmes peuvent être vus comme les deux facettes de la formulation Hamiltonienne du problème, de manière analogue aux problèmes de mécanique en physique, où l’on peut opter pour une formulation en coordonnées ou une formulation avec les moments. L’avantage du problème dual est que même si le problème primal comporte des contraintes, le problème dual s’écrit en revanche sans contraintes (mais avec des termes supplémentaires).
Dans la méthode HUM, la solution du problème dual permet de construire le contrôle optimal. Cela se généralise en fait à tout problème de contrôle optimal sous de bonnes hypothèses, et permet d’obtenir le résultat pour le contrôle de l’équation de la chaleur par des « formes ».