Energy conditions are a major ingredient for the famous singularity theorems of General Relativity. In this talk we want to study one of them from the perspective of initial data sets: An embedded spacelike hypersurface of a Lorentzian manifold carries an induced Riemannian metric and a second fundamental form . The dominant energy condition implies that the pairs arising in this way satisfy a certain inequality that generalizes the condition of non-negative scalar curvature of in the case . As for non-negative (or positive) scalar curvature, index theoretic methods can be used to study the (strict) dominant energy condition for initial data sets. In this context Dirac-Witten operators serve as the appropriate replacement for Dirac operators.