Quelques résultats sur l’équation de Hartree. Partie I : existence d’un état fondamental.

Date/heure
15 mars 2022
09:15 - 10:15

Lieu
Salle de conférences Nancy

Oratrice ou orateur
Jérémy Faupin

Catégorie d'évènement
Équations aux dérivées partielles


Résumé

L’équation de Hartree est une équation de Schrödinger non linéaire utilisée notamment pour décrire l’évolution de certains systèmes quantiques à grand nombre de particules. Dans la première partie, après avoir rappelé brièvement le contexte physique, on s’intéressera au problème de l’existence d’un état fondamental, c’est-à-dire l’existence d’un état minimisant la fonctionnelle d’énergie. L’approche pour résoudre ce problème de minimisation sous contrainte repose sur des arguments développés par Lions dans les années 80, de type concentration-compacité.