Variétés sphériques et conjecture YTD effective

Date/heure
9 mai 2022
14:00 - 15:00

Lieu
Salle de conférences Nancy

Oratrice ou orateur
Thibaut Delcroix

Catégorie d'évènement
Séminaire de géométrie complexe


Résumé

La conjecture de Yau-Tian-Donaldson en géométrie complexe relie l’existence de métriques de Kähler canoniques et la notion algébro-géométrique de K-stabilité. Une version forte a été prouvée pour les métriques de Kähler-Einstein sur les variétés de Fano il y a presque dix ans, et elle a considérablement amélioré notre compréhension de ce problème. Pour des métriques de Kähler canoniques plus générales, telles que les métriques de Kähler extrémales de Calabi, la conjecture YTD est toujours ouverte et, ce qui est peut-être plus important, son utilité pour prouver l’existence de métriques de Kähler extrémales est beaucoup moins claire. Je présenterai un raffinement possible de la conjecture YTD, inspiré par quelques indices dans la littérature, puis des résultats partiels dans cette direction dans le cadre des variétés sphériques.