Transport de masses sur les surfaces

Date/heure
7 juin 2011
16:30 - 17:30

Oratrice ou orateur

Catégorie d'évènement
Colloquium


Résumé

Ludovic Rifford

Toute surface dans l’espace euclidien hérite d’une distance géodésique correspondant aux longeurs mi- nimales des courbes tracées sur la surface entre deux points. Si on se donne une mesure de probabilité sur la surface, toute application de la surface dans elle-même transporte cette mesure vers une mesure image; la mesure « image » d’un ensemble n’étant rien d’autre que la mesure de son image réciproque par l’applica- tion. Etant données deux mesures de même masse, on peut se demander comment transporter la première mesure vers la deuxième de manière optimale relativement à la distance géodésique. Après avoir présenté des résultats assurant l’existence et l’unicité d’applications de transport minimisantes, on s’interessera à la régularités de ces applications. On expliquera en quoi la régularité de toutes les applications de transport entre de bonnes mesures est reliée à la géométrie de la surface.