Two links between waveguides and topology

Date/heure
2 juillet 2018
11:00 - 12:00

Oratrice ou orateur
Andrey V. Shanin

Catégorie d'évènement
Séminaire EDP, Analyse et Applications (Metz)


Résumé

The talk discusses two works of the author linking the topological properties, i.e. “something that can be seen”, with the analytical properties of dispersion relations in waveguides. The first example is related to a quantum waveguide, i.e. to a periodic (elongated in one dimension) graph-like structure consisting of edges bearing a wave equation and nodes considered as joints. In acoustics the edges are thin pipes. The problem of this research was to estimate the number of modes that can travel (or decay) in each direction along such a waveguide. The final result is as follows. One should build a graph consisting of a closed single cell of the periodic graph. The estimation of the number of modes is a maximum degree of a linear subgraph of this graph. Thus, although the consideration is held in the algebraic way (a determinant- like dispersion equation is solved), the answer is given in the graph language. The second example is related to 2D waveguiding structures that are layered in the transversal direction. It may happen that the group velocities of all waveguide modes are lower than the biggest velocity in one of the layers. In this case, one can observe a forerunner, i.e. a pulse travelling faster than all the modes and decaying exponentially. The problem is how to find it on the dispersion diagram of the waveguide. The result is as follows. The dispersion diagram should be considered as a multivalued analytical function of, say, temporal frequency, taken on its Riemann surface. The forerunner branch then can be found on the analytical continuation of the diagram. The branch point of the diagram describes interaction between the layers.