Une approche fonctorielle du calcul différentiel

Date/heure
21 octobre 2021
14:15 - 15:15

Lieu
Salle de conférences Nancy

Oratrice ou orateur
Jérémy Haut (IECL)

Catégorie d'évènement
Séminaire Théorie de Lie, Géométrie et Analyse


Résumé

Au cœur du calcul différentiel se trouve la notion de quotients de différences et de leur prolongation continue, ce qui peut être défini dans des modules sur des anneaux topologiques assez généraux.  L’étude de ces quotients et de leurs domaines amène naturellement à la définition d’une famille de foncteurs « tangents » (dont chacun vient avec une transformation naturelle appelée « ancre »).  Appliquer ces différents foncteurs aux opérations de l’anneau de base fournit une famille d’ « algèbres tangentes », et les foncteurs tangents peuvent être réinterprétés comme des généralisations des extensions scalaires aux algèbres associées.  Une famille de transformations naturelles entre les foncteurs tangents peut être retenue, qui donne lieu à une famille de morphismes entre algèbres tangentes, et fait émerger une catégorie de telles algèbres.  Changeant de point de vue sur la naturalité, on peut ensuite définir les domaines de fonctions lisses comme des foncteurs depuis la catégorie des algèbres tangentes, et les fonctions lisses elles-mêmes comme des transformations naturelles entre ces foncteurs, établissant un plongement d’une « catégorie du calcul différentiel » dans une catégorie de foncteurs.

Référence : https://arxiv.org/abs/2006.04452