Une promenade sur les chemins de Legendre

Date/heure
1 juin 2023
14:30 - 15:30

Lieu
Salle Döblin

Oratrice ou orateur
Youness Lamzouri (IECL)

Catégorie d'évènement
Séminaire de Théorie des Nombres de Nancy-Metz


Résumé

Dans cet exposé, nous allons explorer certains chemins polygonaux, que nous appelons les  »chemins de Legendre »,  et qui encodent des informations sur les valeurs du symbole de Legendre modulo un nombre premier p. Plus précisément, le chemin de Legendre modulo p est défini comme étant le chemin polygonal dont les sommets sont aux points (j, S_p(j)) pour 0≤jp-1, où S_j(p) est la somme (normalisée) des valeurs du symbole de Legendre (n/p) pour n entre 0 et j. En effet, nous allons considérer les questions suivantes lorsqu’on varie le premier p : Quelle proportion du chemin est au dessus de l’axe des x ? Comment se comportent les pics de ces chemins ? Et finalement est ce que ces chemins possèdent une loi limite lorsque p→+∞? Nous allons découvrir que certaines de ces questions correspondent à des problèmes importants en théorie analytique des nombres, tels que l’étude de la taille du plus petit non-résidu quadratique, ainsi que du maximum des sommes de caractères de Dirichlet (dans l’esprit de l’inégalité de Pólya-Vinogradov). Parmi nos résultats, nous démontrons que lorsque le premier p varie entre Q et 2Q et Q →+∞, ces chemins convergent en loi, dans l’espace de Banach des fonctions continues sur [0,1], vers une certaine série de Fourier aléatoire dont les coefficients sont construits en utilisant les fonctions multiplicatives aléatoires de Rademacher. Ce dernier résultat est obtenu en collaboration avec Ayesha Hussain.